organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-[1,1'-(Propane-2,2-diyldiimino)diethylidene]diphenol

Ertan Şahin,^a* Rauf Bilgiç,^b Adnan Kenar^c and Orhan Atakol^c

^aDepartment of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey, ^bTurkish Military Academy, 06654 Bakanlıklar, Ankara, Turkey, and ^cDepartment of Chemistry, Faculty of Science, Ankara University, 06100 Tandogan Ankara, Turkey

Correspondence e-mail: ertan@atauni.edu.tr

Received 6 August 2007; accepted 8 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.061; wR factor = 0.207; data-to-parameter ratio = 25.9.

In the crystal structure of the title compound, $C_{21}H_{30}N_2O_2$, intermolecular N-H···O hydrogen bonds result in the formation of chains along the *b* axis. Intramolecular O-H···N and N-H···O hydrogen bonds are also present.

Related literature

For general backgroud, see: Burgess *et al.* (1999); Höpfl *et al.* (1998); Maciejewska *et al.* (1999); Mitra *et al.* (2004, 2006); Yalçın *et al.* (2001). For bond-length data, see: Allen *et al.* (1987); Sanchez *et al.* (2004).

Experimental

Crystal data

 $\begin{array}{l} C_{21}H_{30}N_2O_2\\ M_r=342.47\\ \text{Monoclinic, }P_{2_1}/c\\ a=11.4232\ (3)\ \text{\AA}\\ b=10.1303\ (3)\ \text{\AA}\\ c=18.4399\ (4)\ \text{\AA}\\ \beta=107.753\ (5)^\circ\end{array}$

$V = 2032.26 (11) \text{ Å}^3$	

Data collection

```
Rigaku R-AXIS RAPID-S
diffractometer
Absorption correction: multi-scan
(Blessing, 1995)
T_{min} = 0.986, T_{max} = 0.986
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of
$wR(F^2) = 0.207$	independent and constrained
S = 1.03	refinement
6244 reflections	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

57575 measured reflections

 $R_{\rm int} = 0.063$

6244 independent reflections

3287 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots O2$ $D1 - H1O \cdots N1$ $N2 - H2N \cdots O1^{i}$ $D2 - H2O \cdots N2$	0.85 (2) 0.82 0.95 (2) 0.82	2.53 (2) 1.92 2.49 (2) 1.95	3.254 (2) 2.648 (2) 3.3833 (19) 2.671 (2)	144.9 (15) 147 155.1 (19) 147

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors are indebted to the Department of Chemistry, Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2308).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Burgess, J., Fawcett, J., Russell, D. R., Gilani, S. R. & Palma, V. (1999). Acta Cryst. C55, 1707–1710.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Höpfl, H., Sanchez, M., Farfan, N. & Barba, V. (1998). *Can. J. Chem.* **76**, 1352–1360.
- Maciejewska, D., Pawlak, D. & Koleva, V. (1999). J. Phys. Org. Chem. 12, 875–880.
- Mitra, A., DePue, L. J., Struss, J. E., Satel, B. P., Parkin, S. & Atwood, D. A. (2004). *Inorg. Chem.* 45, 9213–9224.
- Mitra, A., Harvey, M. J., Proffit, M. K., DePue, L. J., Parkin, S. & Atwood, D. A. (2006). J. Organomet. Chem. 691, 523–528.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sanchez, M., Sanchez, O., Höpfl, H., Ochoa, M. E., Castillo, D., Farfan, N. &
- Lima, S. R. (2004). J. Organomet. Chem. 689, 811–822. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.
- Yalçın, N., Kenar, A., Arici, C., Atakol, O. & Taştekin, M. (2001). Main Group Met. Chem. 24, 247–248.

Acta Cryst. (2007). E63, o3770 [doi:10.1107/S1600536807039153]

2,2'-[1,1'-(Propane-2,2-diyldiimino)diethylidene]diphenol

E. Sahin, R. Bilgiç, A. Kenar and O. Atakol

Comment

It has been reported by many studies that Schiff bases form mononuclear or dinuclear compounds with phenylboronic and boric acids (Burgess *et al.*, 1999; Höpfl *et al.*, 1998; Maciejewska *et al.*, 1999; Mitra *et al.*, 2006; Mitra *et al.*, 2004). In these studies, the compounds of reduced forms of Schiff bases also exist (Mitra *et al.*, 2006). It has been noted that tri- and tetracoordinated compounds are formed between reduced Schiff bases and organic esters of boric acid. In this study, an ONNO type Schiff base has reduced to phenol imine form with the usage of NaBH₄ in MeOH media. In fact, it was aimed to prepare a new complex from reaction of Schiff base and phenylboronic acid, but Schiff base crystal which is suitable for X-ray analysis was obtained. When ligand is crystallized in the common solvents, the appropriate single crystals for X-ray analysis could not be obtained. It was concluded that first phenylboronic acid and ligand are formed an intermediate complex, which is affected the solubility of Schiff base. Hence it was inferred that this procedure could be a new recrystallization method for organic ligands. We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987). In the form of the Schiff base, C=N double bond is about 1.27–1.30 Å (Sanchez *et al.*, 2004). After the reduction reaction of double bond, it was converted to mono bonds (C7—N1 [1.483 (2) Å] and C13—N2 [1.481 (2) Å]). The strong hydrogen bond between iminic nitrogen (in the form of Schiff base) and phenol group continued after reduction (Yalçın *et al.*, 2001).

Rings A (C1—C6) and B (C15—C20) are, of course, planar and the dihedral angle between them is A/B = 89.65 (2)°.

In the crystal structure, intermolecular N—H···O and intramolecular O—H—N and N—H—O hydrogen bonds (Table 1) result in the formation of chains along the *b* axis (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Experimental

The ligand was prepared in two steps. In the first step, the Schiff base was synthesized from 2-hydroxy acetophenone (2.72 g. 20 mmol) and 2,2'-dimethyl -1,3-propanediamine (1.02 g, 10 mmol) in MeOH (50 ml) solution. The mixture was heated until boiling temperature and left to stand on air. After one day, the yellow Schiff base was crystallized. In the second step, the Schiff base (2.0 g) was dissolved in hot MeOH (100 ml) and a piece of solid NaBH₄ was added slowly to this solution until it turned colorless. The reduced Schiff base precipitated after addition of ice. The mixture was left to stand at 277 K for 1 d to obtain crystals, and then was filtered. The crystals were allowed to dry on air. For the preparation of the title complex, the ligand (0.689 g, 2 mmol) was dissolved in hot MeOH (50 ml) and the solution of phenylboronic acid (0.244 g, 2 mmol) in hot acetonitrile (40 ml.) was added. The colorless crystals of (I) were obtained by filtration after 2 d and allowed to dry on air.

Refinement

H1N and H2N (for NH₂) were located in difference syntheses and refined isotropically [N—H = 0.846 (19) and 0.95 (2) Å, $U_{iso}(H) = 0.064$ (5) and 0.091 (7) Å²]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic, methine and methylene H, and x = 1.5 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

2,2'-[1,1'-(Propane-2,2-diyldiimino)diethylidene]diphenol

Crystal data	
$C_{21}H_{30}N_2O_2$	$F_{000} = 744$
$M_r = 342.47$	$D_{\rm x} = 1.119 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5943 reflections
<i>a</i> = 11.4232 (3) Å	$\theta = 2.3 - 30.5^{\circ}$
b = 10.1303 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 18.4399 (4) Å	T = 298 (2) K
$\beta = 107.753 \ (5)^{\circ}$	Needle, colorless
$V = 2032.26 (11) \text{ Å}^3$	$0.2\times0.13\times0.1~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID-S diffractometer	$R_{\rm int} = 0.063$
dtprofit.ref scans	$\theta_{max} = 30.9^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$\theta_{\min} = 2.3^{\circ}$
$T_{\min} = 0.986, \ T_{\max} = 0.986$	$h = -16 \rightarrow 16$

57575 measured reflections	$k = -14 \rightarrow 12$
6244 independent reflections	$l = -26 \rightarrow 26$
3287 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0883P)^2 + 0.1285P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.061$	$(\Delta/\sigma)_{max} \le 0.001$
$wR(F^2) = 0.207$	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.04	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
6244 reflections	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
241 parameters	Extinction coefficient: 0.016 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.65507 (14)	0.05781 (12)	0.93601 (8)	0.0828 (4)
H1O	0.6018	0.0768	0.8962	0.124*
O2	0.20908 (13)	0.27291 (14)	0.74075 (8)	0.0812 (4)
H2O	0.2582	0.2978	0.7192	0.122*
N1	0.49252 (14)	0.21069 (13)	0.83918 (7)	0.0574 (3)
H1N	0.4199 (18)	0.1886 (17)	0.8146 (10)	0.064 (5)*
N2	0.34204 (12)	0.25810 (14)	0.64438 (8)	0.0575 (3)
H2N	0.361 (2)	0.329 (2)	0.6160 (12)	0.091 (7)*
C1	0.65405 (19)	0.3908 (2)	1.01181 (10)	0.0720 (5)
H1	0.6049	0.4659	1.0031	0.086*
C2	0.7652 (2)	0.3934 (3)	1.06795 (12)	0.0892 (7)
H2	0.7908	0.4689	1.0972	0.107*
C3	0.8377 (2)	0.2830 (3)	1.08019 (12)	0.0967 (8)
H3	0.9127	0.2833	1.1186	0.116*
C4	0.80105 (19)	0.1706 (3)	1.03618 (12)	0.0880 (6)
H4	0.8516	0.0966	1.0447	0.106*
C5	0.68921 (17)	0.16917 (19)	0.97972 (10)	0.0679 (5)
C6	0.61266 (15)	0.27926 (17)	0.96746 (9)	0.0591 (4)
C7	0.48655 (16)	0.27559 (17)	0.91006 (9)	0.0618 (4)
H7	0.4574	0.3664	0.8981	0.074*
C8	0.39556 (19)	0.2018 (2)	0.94084 (12)	0.0862 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H8A	0.3158	0.2028	0.9035	0.129*
H8B	0.3912	0.2439	0.9866	0.129*
H8C	0.4224	0.1121	0.9518	0.129*
С9	0.56465 (14)	0.23663 (14)	0.72343 (9)	0.0519 (4)
C10	0.60725 (17)	0.34573 (17)	0.67959 (10)	0.0658 (4)
H10A	0.5446	0.4122	0.6642	0.099*
H10B	0.6222	0.3086	0.6353	0.099*
H10C	0.6816	0.3847	0.7118	0.099*
C11	0.66557 (16)	0.13156 (17)	0.74808 (10)	0.0661 (4)
H11A	0.7405	0.1719	0.7785	0.099*
H11B	0.6785	0.0922	0.7038	0.099*
H11C	0.6409	0.0648	0.7774	0.099*
C12	0.44819 (14)	0.17011 (15)	0.67180 (9)	0.0550 (4)
H12A	0.4668	0.1326	0.6282	0.066*
H12B	0.426	0.0979	0.6996	0.066*
C13	0.23218 (15)	0.18842 (18)	0.59568 (10)	0.0641 (4)
H13	0.2578	0.1299	0.561	0.077*
C14	0.14172 (19)	0.2887 (2)	0.54867 (12)	0.0884 (6)
H14A	0.1159	0.3468	0.582	0.133*
H14B	0.0715	0.2435	0.5159	0.133*
H14C	0.1806	0.3391	0.5184	0.133*
C15	0.17410 (15)	0.10502 (18)	0.64405 (10)	0.0632 (4)
C16	0.12464 (17)	-0.0173 (2)	0.61865 (13)	0.0813 (6)
H16	0.1345	-0.0517	0.5741	0.098*
C17	0.0609 (2)	-0.0898 (3)	0.65776 (16)	0.0990 (8)
H17	0.0277	-0.1715	0.6396	0.119*
C18	0.0474 (2)	-0.0394 (3)	0.72403 (17)	0.1016 (8)
H18	0.0038	-0.087	0.7505	0.122*
C19	0.09767 (19)	0.0807 (3)	0.75152 (12)	0.0875 (6)
H19	0.089	0.1134	0.7967	0.105*
C20	0.16146 (16)	0.1535 (2)	0.71185 (11)	0.0691 (5)
C21	0.54208 (16)	0.30049 (15)	0.79304 (9)	0.0555 (4)
H21A	0.619	0.3368	0.8251	0.067*
H21B	0.4852	0.3733	0.776	0.067*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0960 (11)	0.0667 (8)	0.0763 (9)	0.0131 (7)	0.0124 (7)	-0.0003 (6)
O2	0.0779 (9)	0.0896 (10)	0.0826 (9)	0.0055 (7)	0.0342 (7)	-0.0072 (7)
N1	0.0613 (9)	0.0585 (8)	0.0518 (7)	-0.0081 (6)	0.0166 (6)	-0.0042 (6)
N2	0.0516 (7)	0.0576 (8)	0.0621 (8)	-0.0012 (6)	0.0154 (6)	0.0016 (6)
C1	0.0836 (13)	0.0765 (12)	0.0631 (10)	-0.0157 (10)	0.0333 (9)	-0.0123 (9)
C2	0.0855 (15)	0.1143 (18)	0.0714 (12)	-0.0345 (14)	0.0292 (11)	-0.0239 (12)
C3	0.0632 (12)	0.153 (2)	0.0696 (12)	-0.0242 (14)	0.0133 (10)	-0.0096 (14)
C4	0.0650 (12)	0.1197 (18)	0.0743 (12)	0.0107 (12)	0.0136 (10)	0.0034 (12)
C5	0.0672 (11)	0.0762 (11)	0.0596 (9)	-0.0021 (9)	0.0185 (8)	-0.0016 (8)
C6	0.0619 (9)	0.0672 (10)	0.0515 (8)	-0.0046 (8)	0.0222 (7)	-0.0038 (7)

C7	0.0648 (10)	0.0678 (10)	0.0555 (9)	0.0005 (8)	0.0223 (8)	-0.0035 (7)
C8	0.0695 (12)	0.1258 (18)	0.0692 (11)	-0.0129 (12)	0.0297 (10)	-0.0042 (11)
С9	0.0525 (8)	0.0499 (8)	0.0542 (8)	-0.0012 (6)	0.0175 (6)	-0.0008 (6)
C10	0.0642 (10)	0.0676 (10)	0.0680 (10)	-0.0069 (8)	0.0239 (8)	0.0051 (8)
C11	0.0620 (10)	0.0659 (10)	0.0699 (10)	0.0075 (8)	0.0192 (8)	-0.0002 (8)
C12	0.0568 (9)	0.0522 (8)	0.0566 (8)	0.0005 (7)	0.0179 (7)	-0.0043 (7)
C13	0.0528 (9)	0.0762 (11)	0.0615 (9)	-0.0068 (8)	0.0148 (7)	-0.0012 (8)
C14	0.0641 (11)	0.1088 (16)	0.0826 (13)	-0.0033 (11)	0.0081 (10)	0.0301 (12)
C15	0.0496 (8)	0.0690 (10)	0.0691 (10)	0.0006 (7)	0.0154 (7)	0.0088 (8)
C16	0.0647 (11)	0.0791 (13)	0.0945 (14)	-0.0097 (10)	0.0160 (10)	0.0026 (11)
C17	0.0769 (14)	0.0833 (15)	0.127 (2)	-0.0152 (11)	0.0160 (14)	0.0230 (14)
C18	0.0696 (13)	0.117 (2)	0.1165 (19)	-0.0062 (13)	0.0258 (13)	0.0496 (16)
C19	0.0674 (12)	0.1145 (17)	0.0850 (13)	0.0118 (12)	0.0297 (10)	0.0290 (13)
C20	0.0537 (9)	0.0791 (12)	0.0752 (11)	0.0087 (8)	0.0204 (8)	0.0151 (9)
C21	0.0601 (9)	0.0494 (8)	0.0556 (8)	-0.0038 (7)	0.0157 (7)	-0.0022 (6)

Geometric parameters (Å, °)

O1—C5	1.372 (2)	C9—C10	1.534 (2)
01—H10	0.82	C10—H10A	0.96
O2—C20	1.366 (2)	C10—H10B	0.96
O2—H2O	0.82	C10—H10C	0.96
N1—C21	1.472 (2)	C11—H11A	0.96
N1—C7	1.483 (2)	C11—H11B	0.96
N1—H1N	0.846 (19)	C11—H11C	0.96
N2—C12	1.465 (2)	С12—С9	1.536 (2)
N2—C13	1.481 (2)	C12—H12A	0.97
N2—H2N	0.95 (2)	C12—H12B	0.97
C1—C2	1.372 (3)	C13—C14	1.518 (3)
C1—H1	0.93	С13—Н13	0.98
С2—Н2	0.93	C14—H14A	0.96
C3—C2	1.370 (4)	C14—H14B	0.96
C3—C4	1.386 (3)	C14—H14C	0.96
С3—Н3	0.93	C15—C16	1.383 (3)
C4—H4	0.93	C15—C20	1.391 (3)
C5—C4	1.380 (3)	C15—C13	1.520 (2)
C6—C1	1.390 (2)	С16—Н16	0.93
C6—C5	1.392 (3)	C17—C18	1.376 (4)
C6—C7	1.506 (2)	C17—C16	1.382 (3)
С7—С8	1.524 (3)	С17—Н17	0.93
С7—Н7	0.98	C18—H18	0.93
C8—H8A	0.96	C19—C18	1.375 (4)
C8—H8B	0.96	С19—Н19	0.93
C8—H8C	0.96	C20—C19	1.391 (3)
C9—C21	1.528 (2)	C21—H21A	0.97
C9—C11	1.533 (2)	C21—H21B	0.97
С5—01—Н1О	109.5	H10B—C10—H10C	109.5
С20—О2—Н2О	109.5	C9—C11—H11A	109.5
C21—N1—C7	111.39 (13)	С9—С11—Н11В	109.5

C21—N1—H1N	109.9 (12)	H11A—C11—H11B	109.5
C7—N1—H1N	106.8 (12)	С9—С11—Н11С	109.5
C12—N2—C13	112.24 (14)	H11A—C11—H11C	109.5
C12—N2—H2N	110.3 (13)	H11B—C11—H11C	109.5
C13—N2—H2N	108.4 (13)	N2—C12—C9	114.61 (13)
C2—C1—C6	122.0 (2)	N2—C12—H12A	108.6
C2—C1—H1	119	C9—C12—H12A	108.6
C6—C1—H1	119	N2—C12—H12B	108.6
C3—C2—C1	118.9 (2)	С9—С12—Н12В	108.6
С3—С2—Н2	120.6	H12A—C12—H12B	107.6
C1—C2—H2	120.6	N2-C13-C14	109.33 (16)
C2—C3—C4	121.0 (2)	N2—C13—C15	110.49 (14)
С2—С3—Н3	119.5	C14—C13—C15	111.35 (15)
С4—С3—Н3	119.5	N2—C13—H13	108.5
C5—C4—C3	119.7 (2)	C14—C13—H13	108.5
С5—С4—Н4	120.1	C15—C13—H13	108.5
C3—C4—H4	120.1	C13—C14—H14A	109.5
O1—C5—C4	118.94 (18)	C13—C14—H14B	109.5
O1—C5—C6	120.74 (16)	H14A—C14—H14B	109.5
C4—C5—C6	120.31 (18)	C13—C14—H14C	109.5
C1—C6—C5	118.12 (17)	H14A—C14—H14C	109.5
C1—C6—C7	120.96 (16)	H14B—C14—H14C	109.5
C5—C6—C7	120.88 (15)	C16—C15—C20	118.47 (18)
N1—C7—C6	109.83 (14)	C16—C15—C13	120.38 (17)
N1—C7—C8	109.31 (15)	C20—C15—C13	120.99 (16)
C6—C7—C8	111.43 (14)	C17—C16—C15	121.7 (2)
N1—C7—H7	108.7	C17—C16—H16	119.2
С6—С7—Н7	108.7	C15—C16—H16	119.2
С8—С7—Н7	108.7	C18—C17—C16	119.1 (2)
С7—С8—Н8А	109.5	C18—C17—H17	120.5
С7—С8—Н8В	109.5	С16—С17—Н17	120.5
H8A—C8—H8B	109.5	C19—C18—C17	120.6 (2)
С7—С8—Н8С	109.5	C19—C18—H18	119.7
H8A—C8—H8C	109.5	C17—C18—H18	119.7
H8B—C8—H8C	109.5	C18—C19—C20	120.1 (2)
C21—C9—C11	110.45 (13)	C18—C19—H19	119.9
C21—C9—C10	107.44 (13)	С20—С19—Н19	119.9
C11—C9—C10	109.02 (14)	O2—C20—C19	118.30 (19)
C21—C9—C12	111.75 (13)	O2—C20—C15	121.65 (16)
C11—C9—C12	108.07 (13)	C19—C20—C15	120.0 (2)
C10—C9—C12	110.09 (13)	N1—C21—C9	114.66 (12)
C9—C10—H10A	109.5	N1—C21—H21A	108.6
C9—C10—H10B	109.5	C9—C21—H21A	108.6
H10A—C10—H10B	109.5	N1—C21—H21B	108.6
С9—С10—Н10С	109.5	C9—C21—H21B	108.6
H10A—C10—H10C	109.5	H21A—C21—H21B	107.6
C21—N1—C7—C6	-77.69 (17)	C11—C9—C21—N1	-65.04 (18)
C21—N1—C7—C8	159.77 (15)	C10-C9-C21-N1	176.16 (13)
C7—N1—C21—C9	173.51 (13)	C12—C9—C21—N1	55.30 (18)

C13—N2—C12—C9	-179.33 (13)	N2-C12-C9-C21	57.33 (17)
C12—N2—C13—C14	-161.12 (15)	N2-C12-C9-C11	179.05 (13)
C12—N2—C13—C15	76.00 (17)	N2-C12-C9-C10	-61.98 (17)
C6—C1—C2—C3	0.5 (3)	C16-C15-C13-N2	-142.22 (16)
C2—C3—C4—C5	-0.7 (3)	C20-C15-C13-N2	42.5 (2)
C4—C3—C2—C1	0.9 (3)	C16-C15-C13-C14	96.1 (2)
O1—C5—C4—C3	179.13 (19)	C20-C15-C13-C14	-79.2 (2)
C6—C5—C4—C3	-0.8 (3)	C20-C15-C16-C17	1.7 (3)
C5—C6—C1—C2	-2.0 (3)	C13-C15-C16-C17	-173.71 (18)
C7—C6—C1—C2	175.56 (16)	C16—C15—C20—O2	179.33 (17)
C1—C6—C5—O1	-177.83 (16)	C13—C15—C20—O2	-5.3 (3)
C7—C6—C5—O1	4.7 (2)	C16-C15-C20-C19	-1.5 (3)
C1—C6—C5—C4	2.1 (3)	C13-C15-C20-C19	173.86 (16)
C7—C6—C5—C4	-175.45 (17)	C16-C17-C18-C19	-0.7 (3)
C1—C6—C7—N1	138.62 (16)	C18—C17—C16—C15	-0.6 (3)
C5—C6—C7—N1	-43.9 (2)	C20-C19-C18-C17	0.9 (3)
C1—C6—C7—C8	-100.1 (2)	O2—C20—C19—C18	179.43 (18)
C5—C6—C7—C8	77.3 (2)	C15-C20-C19-C18	0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N1—H1N···O2	0.85 (2)	2.53 (2)	3.254 (2)	144.9 (15)
01—H1O…N1	0.82	1.92	2.648 (2)	147
N2—H2N····O1 ⁱ	0.95 (2)	2.49 (2)	3.3833 (19)	156.00
O2—H2O…N2	0.82	1.95	2.671 (2)	147
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+3/2$.				

